Поиск в словарях
Искать во всех

Физический энциклопедический словарь - теория возмущений. диаграммыфейнмана. виртуальные частицы.

 

Теория возмущений. диаграммыфейнмана. виртуальные частицы.

теория возмущений. диаграммыфейнмана. виртуальные частицы.
Для расчёта процессов в КТП часто используется метод теории возмущений, к-рый заключается в поэтапном учёте всё большего числа актов вз-ствия свободных ч-ц. Каждому этапу учёта вз-ствия можно дать наглядное графич. изображение. Такого рода графики, или диаграммы, были впервые введены амер. физиком Р. Фейнманом и носят его имя.

Введём для изображения каждой свободной ч-цы нек-рую линию, представляющую собой лишь графич. символ распространения ч-цы: фотону — волнистую, эл-ну — сплошную. Иногда на линиях ставят стрелки, условно обозначающие «направление» распространения ч-цы. В первом, втором и т. д. приближениях учитываются однократные, двукратные и т. д. акты вз-ствия между разл. ч-цами (полями). Разная последовательность таких элем. актов соответствует разл.

физ. процессам, а число актов вз-ствия наз. порядком диаграммы. (На всех диаграммах Фейнмана ось времени будет считаться направленной вправо.) На рис. 1 изображена диаграмма 2-го порядка, соответствующая рассеянию фотона на эл-не: в нач. состоянии присутствуют эл-н и фотон, в точке 1 они встречаются и происходит поглощение фотона эл-ном, в точке 2 появляется (испускается эл-ном) новый, конечный фотон.

Это — одна из простейших диаграмм Комптона эффекта. Диаграмма 2-го порядка на рис. 2 отражает процесс обмена фотоном между двумя эл-нами: один эл-н в точке 1 испускает фотон, к-рый затем в точке 2 поглощается вторым эл-ном. Эта диаграмма изображает элем. акт эл.-магн. вз-ствия двух эл-нов. Более сложные диаграммы, соответствующие такому вз-ствию, должны учитывать возможность обмена неск. фотонами, а также испускание и поглощение фотона одним и тем же эл-ном (т. н. радиационные поправки). На рис. 3 изображена диаграмма 3-го порядка, описывающая вз-ствие двух эл-нов с излучением фотона (тормозное излучение).

В приведённых примерах проявляется нек-рое общее св-во диаграмм: все они составляются из простейших

элементов — вершинных частей, или вершин, представляющих собой либо испускание (рис. 4, а) и поглощение (рис. 4, б) фотона эл-ном, либо рождение фотоном электрон-позитронной пары (рис. 5, а) или её аннигиляцию

265



в фотон (рис. 5, б) (античастица изображается такой же линией, что и ч-ца, но направленной «вспять по времени», ибо, согласно теореме СРТ, поглощение ч-цы эквивалентно испусканию античастицы). Каждый из этих

процессов запрещён законами сохранения энергии-импульса. Однако если такая вершина входит составной частью в более сложную диаграмму (как в рассмотренных примерах), то квант. неопределённость снимает этот запрет.

Ч-цы, к-рые рождаются и затем поглощаются на промежуточных этапах процесса, наз. виртуальными, в отличие от реальных ч-ц, существующих достаточно длит. время. На рис. 1 это — виртуальный эл-н, возникающий в точке 7 и исчезающий в точке 2, на рис. 2 — виртуальный фотон и т. д. Т. о., вз-ствие осуществляется путём испускания и поглощения виртуальных ч-ц. Можно несколько условно принять, что ч-ца виртуальна, если квант. неопределённость её энергии ξпорядка ср. значения её энергии. Более распространён др. подход к описанию виртуальных ч-ц, основанных на соотношении (1). Для виртуальных ч-ц это соотношение несправедливо; квадрат их «массы» ξ24-p22 не равен m2, а принимает всевозможные значения, причём разброс последних по отношению к т2 тем больше, чем более «виртуальна» ч-ца. Такой подход позволяет считать, что в каждом элем. процессе вз-ствия сохраняются и энергия, и импульс, квантовые же неопределённости переносятся на массы виртуальных ч-ц.

Диаграммы Фейнмана позволяют при помощи определённых матем. правил находить вероятности соответствующих процессов. Не останавливаясь детально на этих правилах, отметим, что вклад каждой из вершин в амплитуду процесса (квадрат абс. величины к-рой определяет его вероятность, или эфф. сечение) пропорц. константе связи тех ч-ц (или полей), линии к-рых встречаются в вершине. Во всех приведённых диаграммах такой константой явл. электрич. заряд е. Чем больше вершин содержит диаграмма процесса, тем в более высокой степени входит заряд в соответствующее выражение для амплитуды. Так, амплитуда, соответствующая диаграммам на рис. 1 и 2 с двумя вершинами, пропорц. е2, а диаграмма на рис. 3, содержащая три вершины, пропорц. е3. Если диаграммы содержат замкнутые циклы (см. ниже рис. 6, 7, б и 8, бд), то законы сохранения четырёхмерных импульсов (4-импульсов) р(ξ/с, р), где р2= ξ2/c2-р2, в каждой вершине не позволяют выразить 4-импульсы всех виртуальных ч-ц через 4-импульсы нач. и конечных ч-ц; импульс одной из них оказывается неопределённым, и необходимо производить интегрирование по всем его значениям.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):